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Sequential Threat Detection for Harbor Defense:

An X-ray Physics-Based Bayesian Approach

J. V. Candy, Fellow, IEEE

Abstract—The timely and accurate detection of threat contra-
band especially for ports-of-entry (e.g. harbors, bays, borders,
airports) is an extremely critical problem of national security. The
investigation of advanced techniques to reliably and accurately
detect threats and reject non-threats is the major focus of this ef-
fort. The characterization of signal processing models based on x-
ray transport physics is a crucial element in advanced sequential
Bayesian processor designs. Incorporating the underlying statis-
tics of x-ray interactions with materials offering a potentially
unique signature of an object or item under investigation leads
to a (stochastic) physics-based approach. State-space models,
common in many application areas, are introduced into the x-ray
radiation area. Here the resulting processor incorporating this
construct is developed from a pragmatic perspective. A Gaussian
application is discussed to illustrate feasibility of the overall
physics-based approach. It is shown that the sequential Bayesian
processor is capable of providing a reliable and accurate solution
with high confidence in a timely manner for this problem based
on a set of synthesized object intensity data.

I. INTRODUCTION

Countries throughout the world rely heavily on transporting

goods daily on ships and aircraft to maintain stable economies.

Screening for threat/contraband items in containers (cargo,

shipping containers, baggage, etc.) is the primary function of

detection systems deployed in airports and other points-of-

entry especially at shipping/receiving ports. The timely and

accurate detection of threats is an extremely critical problem of

national security. The utilization of high-energy x-rays enables

data that can be used for threat and contraband detection. The

development of advanced techniques to reliably and accurately

detect threats and reject non-threats is the major focus of

homeland security for many nations. Thus, the basic problem

is to detect the presence of threat items (e.g. explosives)

concealed in shipping containers cargo, etc.

One of the major obstacles from a commercial perspective

is that these threats can easily be concealed with items that

occupy the same container. Currently, x-ray scanners are

employed to detect the presence or absence of a threat, but

may be degraded by a variety of uncertainties generated by

the hardware, noise and any uncertainties created by the

interaction of x-rays with these items [1]-[3]. Processing raw

x-ray images of the scanned container requires innovative

methods for detection. It is therefore necessary to develop

customized techniques to scan a container and sort through the

variety of items to decide whether or not a threat is present.

The characterization of signal processing models based

on x-ray transport physics is a crucial element in advanced

sequential Bayesian processor designs. Incorporating the un-

derlying statistics of x-ray interactions with materials offers

a potentially unique signature of an object or item under

investigation leading to a (stochastic) physics-based approach.

State-space models, common in many application areas, are

introduced into the x-ray propagation. Here the resulting

processor incorporating this construct is developed from a

pragmatic perspective. A Gaussian application is discussed to

illustrate feasibility of the overall physics-based approach. It

is shown that the Bayesian processor is capable of providing a

reliable and accurate solution with high confidence in a timely

manner for this problem for a set of synthesized x-ray intensity

data of an object.

In this paper we develop a novel representation evolving

from the usual x-ray transport physics (Lambert-Beer law)-

the state-space model. State-space is a well-known, general

characterization of many dynamic systems incorporating a

wealth of theoretical and practical results. We first briefly

discuss the underlying transport physics and then introduce the

state-space models for a lumped model approach providing a

potential solution to the detection problem. Next we develop a

state-space x-ray transport simulator showing the applicability

of these techniques to synthesize both deterministic as well as

stochastic (Gauss-Markov) transport. The sequential Bayesian

threat detection processor is developed next following the

Wald sequential probability ratio test applied to this problem.

Here we develop the generic processor for our problem

and then develop a physics-based solution for the Gaussian

case. Based on the lumped model simulation, we apply the

sequential Bayesian detection scheme to synthesized data

demonstrating its capability. The results are summarized and

future work discussed in the final section.

The basic approach is model-based incorporating the x-ray

propagation physics into the state-space framework. That is,

the initial polyenergetic source intensity is measured at the

output of a detector array (multi-output). These data along

with a-priori knowledge of the targeted threat are incorporated

into a threat model with the appropriate attenuation coefficient

parameters. Next, measured object intensities are estimated

from the raw detector data using a linear model-based pro-

cessor (MBP) or Kalman filter to complete the log-likelihood

decision function. Then at each step (spatial), the intensity

is predicted by the MBP and a decision (threat/non-threat/no

decision) is made. Based on the Lambert-Beer law and the

state-space representation, the sequential log-likelihood ratio

detector is illustrated below in principle and application (Fig.

1). The plots illustrate the processor as well as the application

to synthesized threat data.

In this paper we first develop the transport physics and



then introduce the state-space models for a “lumped model”

approach in Sec. 2. Next we develop a state-space x-ray trans-

port simulator showing the applicability of these techniques

to synthesize both deterministic as well as stochastic (Gauss-

Markov) transport in Sec. 3. Sequential Bayesian threat detec-

tion is developed in Sec. 4 following the Wald sequential prob-

ability ratio test applied to this problem. Here we develop the

generic processor for our problem and then develop a solution

for the Gaussian case. Based on the lumped model simulation,

we apply the sequential Bayesian detection scheme to synthe-

sized data (ammonium-nitrate explosive threat) demonstrating

its capability. The results are summarized and future work

discussed in the final section.

II. PHYSICS-BASED MODELS

The characterization of a wealth of items that could be

enclosed in a shipping container covers a wide range of

features. From an x-ray interrogation perspective for threat

detection, we are concerned primarily with the interaction of

x-ray photons (energy) with the variety of materials enclosed

within.

A. Background: X-ray Physics

When x-rays interact with matter (materials), they undergo

attenuation effects, that is, an x-ray or equivalently beam of

photons passing through matter is depleted or attenuated as

photons are removed through absorption and scattering [1],

[2]. Here photon energy (ε) is transformed to heat (absorption)

or scattered with its energy dissipated and re-directed. Assume

we have a perfectly parallel monoenergetic (single energy)

beam of x-rays with intensity I(ε, x) irradiating a uniformly

thick, single material absorber as shown in Fig. 1, then the

transmitted (output) intensity is governed by

d

dx
I(ε, x) = −µ(ε,Z, ρ) I(ε, x) (1)

where µ(ε,Z, ρ) is the attenuation coefficient (cm−1) at

energy ε (KeV ) for a “single” material of mass density ρ

(
g

cm3 ) with atomic number Z along the x-direction of path

length 4x = x−xo (cm) with I(εo, xo) is the initial intensity.

Solving this equation leads to the Lambert-Beer Law [1], [2]

given by

I(ε, x) = I(εo, xo) × exp
{

− µ(ε,Z, ρ) (x − xo)
}

(2)

This relation can be extended further to incorporate com-

posite materials ( (Z, ρ) −→ (Zm, ρm); m = 1, · · · , M ) and

multiple source energies ( S(εn); n = 1, · · · , N ) giving the

general expression

I(S(εn), x) = I(S(εo), xo)

× exp
{

−

∫

(

M
∑

m=1

µm(S(εn),Zm ρm)4x
)

dε
}

(3)

Fig. 1. X-ray Transmission Physics: polyenergetic source, object, detector
array measurements and sequential Bayesian processing for threat detection.

for n = 1, · · · , N .

From these results, we see that the attenuation coefficients

contain all of the critical physical information required to

uniquely characterize the material under irradiation by the

source x-rays.

B. Physics-Based State-Space (Lumped) Models

1) X-ray Transmission: State-space representations of dy-

namic systems have long been recognized as a solution to

various classes of differential/difference equations. Following

their introduction to a variety of technical areas, an enormous

amount of systems theory has evolved enabling the develop-

ment generic algorithms that merely require the modelers to

transform their models into state-space form enabling them to

be incorporated into this powerful framework [9]. Once ac-

complished many properties can be analyzed and exploited to

solve a variety of problems. State-space models are very useful

for physics applications and can be placed in a convenient

vector-matrix form useful for signal processing, estimation and

detection.

For our problem, we return to the original first order

differential transmission relation of Eq. 1 and realize that

it is already in the well-known state-space form [9]. We

consider this model a “lumped model” where the object is

characterized by a set of average attenuation coefficients.

Assuming that a polyenergetic source consisting of a set of

discrete monoenergetic energies, εn; n = 1, · · · , N , irradiates

the material (object), Beer’s law is now a set of first order

differential transport equations, that is,

d

dx
I(εn, x) = −µ(εn,Z, ρ) I(εn, x); n = 1, · · · , N (4)



with incident intensities given by I(εno, xno) identifying each

monoenergetic source component. Expanding over n we obtain

the equivalent state-space transmission model given by

d

dx







I(ε1, x)
...

I(εN , x)






=







−µ(ε1,Z, ρ) O
. . .

O −µ(εN ,Z, ρ)













I(ε1, x)
...

I(εN , x)







which can be expressed simply in vector-matrix form as

d

dx
I(ε, x) = A(ε,Z, ρ) I(ε, x) (5)

where we have the state intensity vector I ∈ RN×1, the

system (physics) matrix, A ∈ RN×N with initial (incident)

intensity vector defined by

I(εo, xo) :=
[

I(ε1o, x1o), · · · , I(εNo, xNo)
]T

and T the matrix transpose operator. It is well-known that the

solution to the linear shift invariant (A not a function of I)

state equations is given by the state transition matrix as [9]

T (ε, x) = eA(ε,Z,ρ) (x−xo) (6)

with T ∈ RN×N yielding Beer’s law for a polyenergetic

source constructed as a composition of monoenergetic sources,

that is,

I(ε, x) = T (ε, x) I(εo, x) = eA(ε,Z,ρ) (x−xo) I(εo, xo) (7)

This representation can be considered a “lumped model”

where the object is characterized by a set of average at-

tenuation coefficients {µ(εn,Z, ρ)} n = 1, · · · , N , one at

each energy. Thus, energetic photons interacting with the

object (material) are attenuated according to each associated

attenuation coefficient. An alternate representation incorpo-

rates the discretization of the object into voxels through

CT-reconstruction followed by expressing transport as a set

of coupled differential/difference equations [10]. State-space

methods can be applied in either of these representations. Here

we concentrate on the lumped model, since it is the simplest

to comprehend.

2) X-ray Detector Measurements: Next let us consider an

x-ray beam or equivalently ray path consisting of polyenergetic

photons irradiating the material and measured by a detector

element, say the `-th. We choose to use a scintillation mea-

surement system composed of a crystal converting the x-ray

radiation to visible light photons coupled to a photo diode

converting the photon energy to electrical charge/current.

With this measurement system, the detector is related to the

photon intensity through a set of energy dependent conversion

constants, that is, for the `-th detector element and a set of

N -energies, we have that

d`(ε, x) = cT
` (ε,4ε) I`(ε, x) =

N
∑

n=1

c`(εn) I`(εn, x) (8)

where c`, I` ∈ RN×1 and c` is an energy dependent vector of

scintillation scale factors converting photon energy-to-charge

(current).

For acquisition speed, an array of L-elements is normally

applied, that is, expanding over `, we obtain the detector

measurement model as















d1(ε, x)
− −−

...

− −−
dL(ε, x)















=















cT
1 (ε,4ε)
− −−

...

− −−
cT
L(ε,4ε)















I(ε, x) (9)

which can also be expressed simply as

d(ε, x) = C(ε,4ε) I(ε, x) (10)

where we have the detector measurement vector, d ∈ RL×1,

the measurement system matrix, C ∈ RL×N , and the corre-

sponding state intensity vector I ∈ RN×1.

Thus, the overall physics-based state-space description (de-

terministic) of the x-ray transmission and detector system is

summarized by combining the relations of Eqs. 5 and 10 for

each ray and detector element as

d

dx
I(ε, x) = A(ε; θ) I(ε, x)

d(ε, x) = C(ε,4ε) I(ε, x) (11)

where the N -state intensity vector by I , the N×N system ma-

trix is defined by A(ε; θ) := diag
[

−µ(ε1; θ), · · · ,−µ(εN ; θ)
]

and the material parameter set by θ :=
{

Z, ρ
}

.

We summarize the development of the state-space repre-

sentations in Fig. 2a. Here we see the evolution of the photon

intensity proportional to the detector output current. Initially,

the polyenergetic source represented by the composition of a

set of monoenergetic sources (I(ε, x)) irradiating the object.

The transmitted output (I(ε, x)) is collected by the detector ar-

ray, integrated, producing a set of output currents proportional

to the transmitted photon energies (d(ε, x)) used as input to

image the object attenuation. The voxel (CT) representation is

also included in Fig. 2b for completeness.

This completes the overall state-space description of the

x-ray transmission physics and detector (array) measurement

system. Note also that a stochastic description incorporates a

variety of noise and parameter uncertainty processes that we

shall discuss subsequently in later sections.



Fig. 2. X-ray transmission: (a) Transmission physics with “lumped” state-
space model (dashed). (b) Voxel physics for j-th ray with state-space model
(dashed).

III. X-RAY STATE-SPACE SIMULATION

In this section we briefly discuss the development of a state-

space simulator capable of synthesizing x-ray detector outputs

for generating noisy detector data. The approach involves

discretizing the solution using the state transition matrix which

is a matrix exponential [9] and generating data for an object.

The basic deterministic state-space model of Eq. 11 can

easily be extended to a stochastic representation assuming

additive, zero-mean, Gaussian noise resulting in the Gauss-

Markov state-space model either given by the differential

equation of Eq. 11 or equivalently in terms of the state

transition matrix of Eq. 7. The system of equations may

be discretized to obtain a sampled data representation [9]

resulting in the following discrete Gauss-Markov model given

by

I(ε, xk) = T (ε,4xk)I(ε, xk−1) + 4xkT (ε,4xk)w(xk−1)
(12)

with corresponding measurement (detector array) model

d(ε, xk) = C(e,4ε)I(ε, xk−1) + v(xk) (13)

for NI -intensity (state) and white, Gaussian process uncer-

tainty/noise vectors, I ,w with w ∼ N (0, Rww). Here

d the Nd-measurement (detector array) with corresponding

white, Gaussian uncertainty/noise (electronic) vector, v for

v ∼ N (0, Rvv) along with the corresponding Nd × NI mea-

surement matrix, C. The incremental path length is specified

by 4xk := xk−xk−1 with (NI ×NI) state transition matrix,

T ,

T (ε,4xk) = eA(ε;θ)4xk (14)

for A(ε; θ) = diag [−µ(ε1; θ), · · · ,−µ(εNd
; θ)] the material

attenuation coefficients and set of intrinsic material properties,

{θ}. In addition to the intensity and measurement models, the

Gauss-Markov representation also propagates the associated

statistics (state/measurements) means and variances which are

used to construct uncertainty bounds around the synthesized

data, that is, the mean state intensity is given by the relation

MI(ε, xk) = T (ε,4xk)MI(ε, xk−1) (15)

along with the mean detector measurement

M
d
(ε, xk) = C(ε,4ε)MI(ε, xk) (16)

The corresponding state and measurement covariances are

given by

PI(xk) = T (ε,4xk)PI(xk−1)T
T (ε,4xk) + Rww(xk−1)

(17)

Rdd(xk) = C(ε,4ε)PI(xk−1)C
T (ε,4ε) + Rvv(xk) (18)

To summarize this “lumped” model representation, the dis-

crete Gauss-Markov model characterizes the photon transport

through a homogeneous object irradiated by a polyenergetic

source with uncertainties approximated by additive zero-mean,

white Gaussian sequences both in intensity (process) and

detector intensity measurements (measurement). Next we de-

velop the simulator and demonstrate some of its results.

In this problem we assume that an object or item has been

isolated and extracted from a CT-image resulting in an atten-

uation coefficient sequence (ACS). From this sequence a set

of average attenuation coefficients is obtained at each known

source energy and represented by {µ(εn, θ} n = 1, · · · , N .

We developed a simple transport simulator based on the

lumped model and the state-space framework to synthesize

a threat object composed of ammonium nitrate (NH4NO3)

material characterized uniquely by its set of energy dependent

attenuation coefficients obtained from the tables [1] based on

a polyenergetic source and detector bands at 30 − 160 KeV

incremented every 10 KeV . The transport is calculated every

4x = 100 mm. We assume that an x-ray beam (ray) at 0o

passes through the object (no clutter) and is measured by an

8-element scintillation detector array (see Fig. 3). We also

assume that uncertainties propagate and are captured by the

model discussed above with intensity (process) uncertainty

of covariance Rww = 25 and detector measurement noise

of covariance Rvv = 107. The scanner volume can be

considered a 1 m spherical volume. The problem parameters

are summarized in Table I. We have NI = 14 states (and

average attenuation coefficients) with Nd = 8 elements in the

detector array. The simulation was performed for a single beam

(ray) propagating through the object at a total path length of

100 cm (scan volume) with the object of cross-section 6 cm

located 30 cm from the source.



Fig. 3. X-ray transmission physics state-space lumped-model simulation of

object irradiated by a polyenergetic source (30−160 KeV ) characterized by
a set of attenuation coefficients of ammonium-nitrate material and 8-element

scintillation detector array.

Table I. Transport Physics Simulation (Ammonium Nitrate).

Energy (KeV) Atten. Coefficients

30 0.95388

40 0.68456

50 0.58017

60 0.52641

70 0.49307

80 0.47019

90 0.45164

100 0.43706

110 0.42389

120 0.41288

130 0.40292

140 0.39344

150 0.38511

160 0.37761

The results of the simulation are shown in Figs. 4 and 5.

As expected, the photons are at the initial intensity I(εo, xo)
and then drop off exponentially based on their respective

attenuation coefficients and detector measurements as they

interact with the material (ammonium-nitrate) with the path

length incremented in 4x = 0.1 cm steps. Note that in

reality the detector array provide only a single snapshot of

integrated intensity at a given x-location providing a measured

projection [2]. Here we applied additive Gaussian noise to

approximate the uncertainty of the transported photons as well

as measurement uncertainty (electronic noise) at the detector

array. Later in Sec. 4, we will discuss the application of a

physics-based processor capable of enhancing the intensity and

extracting the states.

The resulting intensity (states) at a variety of array locations

(along the x-axis) is shown in the surface plot of Fig. 4.

Fig. 4. X-ray transmission physics state-space simulation: Surface represen-
tation of state intensities with zero-mean, additive Gaussian noise (process).

We note the differing exponential decay rates along with the

additive Gaussian intensity noise (process). The noisy detector

measurement surface is shown in Fig. 5 with similar charac-

teristics. This completes the lumped model simulations which

will be used as input to the sequential detector algorithm.

IV. SEQUENTIAL BAYESIAN THREAT DETECTION

Detection of threats residing in a variety of containers is

essentially a binary detection problem. Here we investigate

a solution to this decision problem to detect the presence of

threat materials using x-ray radiation as the primary modality

(e.g. pot scanners) to irradiate each object and assess its

status—threat or non-threat. Therefore, we define the problem

in terms of a binary hypothesis test. From the scanner we

use detector outputs directly available from each of the array

elements, that is, the binary threat detection problem is based

on testing the hypotheses

H0 : d(ε, xk) = C(ε,4ε)I(ε, xk; θ) + v(xk) [NON-THREAT]

H1 : d(ε, xk) = C(ε,4ε)I(ε, xk; θt) + v(xk) [THREAT] (19)

where

d is the Nd − element detector array

C is the (Nd × NI) − energy measurement matrix

I is the NI − energy dependent intensities (states)



Fig. 5. X-ray transmission physics detector simulation: Surface representation
of detector measurements with zero-mean, additive Gaussian noise (measure-
ment).

v is the Nd − white Gaussian uncertainty/noise vector

θ is the set of material properties (object and target)

xk is the length along the ray

(20)

The optimal solution to this decision problem evolves di-

rectly from the Neyman-Pearson theorem [18]-[19] maximiz-

ing the detection probability for a fixed false-alarm probability

resulting in the likelihood-ratio decision function given by

defined by

L[DK] :=
Pr[DK|H1]

Pr[DK|H0]
(21)

where DK := {d(ε, x1), · · · , d(ε, xK)} with the hypothesis

test defined by

L[DK]

H1

>

<

H0

T (22)

for threshold T . This expression implies a “batch” decision,

that is, we gather the K-detector array measurements, calculate

the likelihood of Eq. 21 over the entire batch of data and

compare it to the threshold to make the decision.

Expanding the likelihood ratio for each detector output, we

obtain

L[DK] =
Pr[d(ε, x1), · · · , d(ε, xK)|H1]

Pr[d(ε, x1), · · · , d(ε, xK)|H0]
(23)

From the Bayes’ rule [16], we have that

Pr[DK |H`] = Pr[d(ε, x1), · · · , d(ε, xK)|H`]

= Pr[d(ε, xK),DK−1|H`]

(24)

and

Pr[d(ε, xK),DK−1|H`]

= Pr[d(ε, xk)|DK−1,H`]× Pr[DK−1|H`]; ` = 0, 1

(25)

Substituting these expressions into the likelihood ratio

above, replacing K → k and grouping, we obtain

L[Dk] =

[

Pr[Dk−1|H1]

Pr[Dk−1|H0]

]

×
Pr[d(ε, xk)|Dk−1,H1]

Pr[d(ε, xk)|Dk−1,H0]
(26)

and the recursion or equivalently sequential likelihood ratio

for the k-th detector output follows as [19], [20]

L[Dk] = L[Dk−1]×
Pr[d(ε, xk)|Dk−1,H1]

Pr[d(ε, xk)|Dk−1,H0]
; k = 0, 1, · · · , K

(27)

with Pr[d(ε, x0)|D−1,H`] = Pr[d(ε, x1)|H`], the prior under

each hypothesis.

Anticipating the exponential family of distributions [13], we

take logarithms to obtain the sequential log-likelihood ratio

(decision function) Λ[Dk], that is,

Λ[Dk] = Λ[Dk−1] + lnPr[d(ε, xk)|Dk−1, H1]

− ln Pr[d(ε, xk)|Dk−1, H0]

(28)

Therefore, the Wald sequential probability-ratio test is [19],

[20]

Λ[Dk] > lnT1(k) Accept H1

lnT0(k) ≤ Λ[Dk] ≤ lnT1(k) Continue

Λ[Dk] < lnT0(k) Accept H0

(29)

where the thresholds are specified in terms of the false alarm

(PFA) and miss (PM ) probabilities (from ROC curve) as

T0(k) =
PM (k)

PFA(k)
; T1(k) =

1 − PM (k)

PFA(k)
(30)

The sequential Bayesian detector operation is illustrated in

Fig. 6 where we observe the updated decision function at each

step along with the upper and lower decision thresholds based

on the desired operating point (from a ROC curve).



Fig. 6. Sequential Bayesian processor operation. At each measurement the
attenuation coefficients are extracted and a threat or non-threat or take-another-
sample is declared.

A. Gaussian Case

In this section, we apply the Gaussian assumption to the

unknown distributions and develop the sequential Bayesian

processor. Thus, for our x-ray material detection problem, we

must specify the required probabilities for each hypothesis

which implies that we must incorporate the underlying trans-

port physics (Beer’s law) developed previously. Incorporating

uncertainty and noise into the representation, the following

Gauss-Markov model evolves directly from the state-space

models as

I(ε, xk) = T (ε,4xk)I(ε, xk−1) + 4xkT (ε,4xk)w(xk−1)
(31)

with corresponding measurement (detector array) model

d(ε, xk) = C(e,4ε)I(ε, xk−1) + v(xk) (32)

with NI -intensity (state) and white, Gaussian process un-

certainty/noise vectors, I ,w with w ∼ N (0, Rww). Here

d the Nd-measurement (detector array) with corresponding

white, Gaussian uncertainty/noise (electronic) vector, v for

v ∼ N (0, Rvv) along with the corresponding Nd × NI

measurement matrix, C. The path length is specified by

4xk := xk − xk−1 with (NI × NI) state transition matrix,

T ,

T (ε,4xk) = eA(ε;θ)4xk (33)

for A(ε; θ) = diag [−µ(ε1; θ), · · · ,−µ(εN ; θ)] the material

attenuation coefficients and set of intrinsic material properties,

{θ}.

With this representation of x-ray transport, it is possible to

specify the binary decision problem

H0 : d(ε, xk) = C(ε,4ε)Î(ε, xk; θ) + v(xk)[NON-THREAT]

H1 : d(ε, xk) = C(ε,4ε)I(ε, xk; θt) + v(xk)[THREAT] (34)

by the Gaussian distributions

Pr[d(ε, xk)|Dk−1; H0] = N
(

d̂(xk|xk−1), Ree

)

Pr[d(ε, xk)|Dk−1; H1] = N (d(ε, xk; θt), Rdd) (35)

or

Pr[d(ε, xk)|Dk−1; H0] = (2π)−Nd/2|Ree|
−1/2 ×

e−
1

2 (d(ε,xk)−d̂(xk|xk−1))
T
R

−1

ee (d(ε,xk)−d̂(xk|xk−1))

Pr[d(ε, xk)|Dk−1; H1] = (2π)−Nd/2|Rdd|
−1/2 ×

e−
1

2
(d(ε,xk)−d(ε,xk;θt))

T
R

−1

dd
(d(ε,xk)−d(ε,xk;θt))

(36)

Taking logarithms of these distributions and inserting them

into the log-likelihood expression of Eq. 28, we obtain

Λ[Dk] = Λ[Dk−1] − ln
(

(2π)−Nd/2|Rdd|
−1/2

)

−
1

2
(d(ε, xk) − d(ε, xk; θt))

T
R

−1
dd (d(ε, xk) − d(ε, xk; θt))

+ ln
(

(2π)−Nd/2|Ree|
−1/2

)

+
1

2

(

d(ε, xk) − d̂(xk|xk−1)
)T

R
−1
ee

(

d(ε, xk) − d̂(xk|xk−1)
)

(37)

Since the underlying physics-based models are assumed

Gauss-Markov, then we know that the optimal solution to

the linear estimation of the detector array measurement is

the conditional mean with sequential solution provided by

the well-known Kalman filter [9]. Therefore, we have that

d̂(xk|xk−1) = E{d(ε, xk)|Dk−1} the conditional mean at

path length xk based on past path lengths up to xk−1 along

with conditional covariance, Ree(xk) = cov(e(xk))—the

innovations covariance provided by the sequential algorithm,

that is,



Îε(xk|xk−1) = T (ε,4xk; θ)Îε(xk−1|xk−1) [Pred. State]

d̂(xk|xk−1) = C(ε,4ε)Îε(xk|xk−1) [Pred. Measurement]

P̃I(xk|xk−1) = T (ε,4xk; θ)P̃I(xk−1|xk−1)T (ε,4xk; θ)
T

+ Rww(xk−1) [Pred. Cov.]

e(xk) = d(ε, xk) − d̂(xk|xk−1)) [Innovations]

Ree(xk) = C(ε,4ε) P̃I(xk|xk−1)C
T (ε,4ε)

+ Rvv(xk) [Innovations Cov.]

(38)

Here we ignore the update terms in the algorithm (for details

see [9]).

An expression for the “target” or “true” distribution can be

specified using the true (target) parameters from the available

tables [1] for

MI(ε, xk) = T (ε,4xk)MI(ε, xk) (39)

along with the mean detector measurement

M
d
(ε, xk) = C(ε,4ε)MI(ε, xk−1) (40)

The corresponding state and measurement mean and covari-

ances are given by Eqs. 15-18, that is,

d(ε, xk; θt) ↔ M
d
(ε, xk)

Rdd(xk) ↔ C(ε,4ε)PI(xk−1)C
T (ε,4ε) + Rvv(xk)

(41)

Substituting these expressions into the log-likelihood deci-

sion function, we obtain

Λ[Dk] = Λ[Dk−1] + κ −
1

2
(d(ε, xk) −Md(ε, xk))

T
R

−1
dd

(xk) (d(ε, xk) −Md(ε, xk)) +
1

2

(

e
T (xk)R−1

ee (xk)e(xk)
)

(42)

where κ := 1
2

(

ln |Ree(xk)| − ln |Rdd(xk)|
)

.

Following the simulation of Sec. 3, we developed the

physics-based processor to enhance the intensity states and

detector measurements. The results are shown in Figs. 7 and

8. In Fig. 7 we observe the intensity (state) estimates clearly

demonstrating the capability of the processor along with the

enhanced measurements shown in Fig. 8. Clearly the noisy

detector array measurements have been enhanced significantly

compared to Fig. 5.

Finally to demonstrate the sequential Bayesian detection

algorithm using the enhanced data provided by the Kalman

filter (above), we applied it to the synthesized data with a

lower signal-to-noise ratio (SNR) with the resulting output

shown in Fig. 9. We note the log-likelihood decision function

and the associated bounds assuming a detection probability of

Fig. 7. Physics-based processor results: Intensity (state conditional mean)
estimation.

Fig. 8. Physics-based processor results: Detector measurement estimation.



Fig. 9. Physics-based processor threat detection for Gaussian case: Log-

likelihood ratio decision function (green) and thresholds for an assumed
detection and false alarm probabilities of 95% and 5%, respectively.

95% and a false alarm probability of 5% which are used to

calculate the upper and lower thresholds. The results for this

case are expected with the log-likelihood function increasing

until the detection threshold is crossed. Next we summarize

our results and discuss future efforts.

V. SUMMARY

We have demonstrated that a physics-based sequential

Bayesian processor [13] can be developed to provide a feasible

solution to the x-ray threat contraband detection problem

by defining a target x-ray item(s). Sequential techniques

based on the state-space formulation [9] were developed and

discussed demonstrating their ability to capture the x-ray

transport physics for a lumped transport model representation.

The lumped approach was further investigated and an x-ray

transport synthesizer was developed including uncertainties

resulting in a Gauss-Markov state-space formulation. Syn-

thesized data for an ammonium-nitrate explosive threat was

then employed to investigate the performance of a sequential

Bayesian detector incorporating a physics-based processor

(Kalman filter [9]) for intensity measurement enhancement.

The resulting log-likelihood detection technique was capable

of performing a detection under the assumed detection and

false alarm probabilities. Thus, the Bayesian approach enables

the development of a physics-based detection algorithm capa-

ble of detected threat under restricted assumptions (Gaussian,

etc.).

Future work involves the investigation of: (1) the lumped

model approach to incorporate multiple beams at each angle;

(2) the development and application of the sequential Bayesian

detection algorithms directly for intensities (states); (3) the

development of a voxel-based, state-space simulator, estimator

and detector; (4) the application of the various processors to

sophisticated simulation data; (5) the application to controlled

experimental data (x-ray scanner); and (6) the application of

the processor to cargo data.
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